Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcript abundance patterns of Populus C-repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress.

Identifieur interne : 001A92 ( Main/Exploration ); précédent : 001A91; suivant : 001A93

Transcript abundance patterns of Populus C-repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress.

Auteurs : Ying Li [Oman] ; Baohua Xu ; Qingzhang Du ; Deqiang Zhang

Source :

RBID : pubmed:25916311

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

We conducted a candidate gene-based approach to search for genetic associations between 10 SNPs in PsCBF2 and 10 abiotic stress-related traits. The increasing incidence of abiotic stresses and the limitations of available treatments, particularly in trees, highlight the need to improve our understanding of the mechanisms of stress responses. In Arabidopsis, C-repeat binding factor 2 (CBF2) plays an important role in freezing tolerance and cold acclimation. Here, we isolated orthologs of CBF2 from five Populus species. Expression profiling revealed that the Populus CBF2s were preferentially induced in response to cold, with CBF2 transcript abundances ranging from 5.4- to 62-fold higher than in unstressed controls of the corresponding species. In addition, we used a candidate gene-based approach in Populus simonii Carr. to identify single nucleotide polymorphisms (SNPs) in PsCBF2 associated with physiological and biochemical traits. PsCBF2 showed high nucleotide diversity (π T = 0.00549, θ w = 0.01406) and low average linkage disequilibrium (r (2) = 0.061). Association studies in 528 individuals of an association population showed that nine SNPs (false discovery rate Q < 0.10) and one haplotype (Q < 0.10) were significantly associated with differences in four physiological and biochemical traits (P < 0.005), with each marker explaining 1.31-5.87 % of the total variance in the corresponding trait. PsCBF2 transcript levels differed significantly in abundance among genotypic classes for most of the significant SNPs. Identification of these significant associations will help reveal the molecular basis of physiological differences and provide a starting point for marker-assisted selection for traits involved in stress tolerance in P. simonii.


DOI: 10.1007/s00425-015-2307-3
PubMed: 25916311


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcript abundance patterns of Populus C-repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress.</title>
<author>
<name sortKey="Li, Ying" sort="Li, Ying" uniqKey="Li Y" first="Ying" last="Li">Ying Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China, liying105527@126.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China</wicri:regionArea>
<wicri:noRegion>People's Republic of China</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Baohua" sort="Xu, Baohua" uniqKey="Xu B" first="Baohua" last="Xu">Baohua Xu</name>
</author>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25916311</idno>
<idno type="pmid">25916311</idno>
<idno type="doi">10.1007/s00425-015-2307-3</idno>
<idno type="wicri:Area/Main/Corpus">001D17</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D17</idno>
<idno type="wicri:Area/Main/Curation">001D17</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D17</idno>
<idno type="wicri:Area/Main/Exploration">001D17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcript abundance patterns of Populus C-repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress.</title>
<author>
<name sortKey="Li, Ying" sort="Li, Ying" uniqKey="Li Y" first="Ying" last="Li">Ying Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China, liying105527@126.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China</wicri:regionArea>
<wicri:noRegion>People's Republic of China</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Baohua" sort="Xu, Baohua" uniqKey="Xu B" first="Baohua" last="Xu">Baohua Xu</name>
</author>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Cold Temperature (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Association Studies (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Polymorphism, Single Nucleotide (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Quantitative Trait, Heritable (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Allèles (MeSH)</term>
<term>Basse température (MeSH)</term>
<term>Caractère quantitatif héréditaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Déséquilibre de liaison (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polymorphisme de nucléotide simple (génétique)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Études d'associations génétiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Polymorphism, Single Nucleotide</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Sequence</term>
<term>Cold Temperature</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Association Studies</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Linkage Disequilibrium</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Quantitative Trait, Heritable</term>
<term>Sequence Alignment</term>
<term>Species Specificity</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Allèles</term>
<term>Basse température</term>
<term>Caractère quantitatif héréditaire</term>
<term>Données de séquences moléculaires</term>
<term>Déséquilibre de liaison</term>
<term>Génotype</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'espèce</term>
<term>Stress physiologique</term>
<term>Séquence d'acides aminés</term>
<term>Variation génétique</term>
<term>Études d'associations génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>We conducted a candidate gene-based approach to search for genetic associations between 10 SNPs in PsCBF2 and 10 abiotic stress-related traits. The increasing incidence of abiotic stresses and the limitations of available treatments, particularly in trees, highlight the need to improve our understanding of the mechanisms of stress responses. In Arabidopsis, C-repeat binding factor 2 (CBF2) plays an important role in freezing tolerance and cold acclimation. Here, we isolated orthologs of CBF2 from five Populus species. Expression profiling revealed that the Populus CBF2s were preferentially induced in response to cold, with CBF2 transcript abundances ranging from 5.4- to 62-fold higher than in unstressed controls of the corresponding species. In addition, we used a candidate gene-based approach in Populus simonii Carr. to identify single nucleotide polymorphisms (SNPs) in PsCBF2 associated with physiological and biochemical traits. PsCBF2 showed high nucleotide diversity (π T = 0.00549, θ w = 0.01406) and low average linkage disequilibrium (r (2) = 0.061). Association studies in 528 individuals of an association population showed that nine SNPs (false discovery rate Q < 0.10) and one haplotype (Q < 0.10) were significantly associated with differences in four physiological and biochemical traits (P < 0.005), with each marker explaining 1.31-5.87 % of the total variance in the corresponding trait. PsCBF2 transcript levels differed significantly in abundance among genotypic classes for most of the significant SNPs. Identification of these significant associations will help reveal the molecular basis of physiological differences and provide a starting point for marker-assisted selection for traits involved in stress tolerance in P. simonii.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25916311</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>242</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcript abundance patterns of Populus C-repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress.</ArticleTitle>
<Pagination>
<MedlinePgn>295-312</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-015-2307-3</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="CONCLUSIONS">We conducted a candidate gene-based approach to search for genetic associations between 10 SNPs in PsCBF2 and 10 abiotic stress-related traits. The increasing incidence of abiotic stresses and the limitations of available treatments, particularly in trees, highlight the need to improve our understanding of the mechanisms of stress responses. In Arabidopsis, C-repeat binding factor 2 (CBF2) plays an important role in freezing tolerance and cold acclimation. Here, we isolated orthologs of CBF2 from five Populus species. Expression profiling revealed that the Populus CBF2s were preferentially induced in response to cold, with CBF2 transcript abundances ranging from 5.4- to 62-fold higher than in unstressed controls of the corresponding species. In addition, we used a candidate gene-based approach in Populus simonii Carr. to identify single nucleotide polymorphisms (SNPs) in PsCBF2 associated with physiological and biochemical traits. PsCBF2 showed high nucleotide diversity (π T = 0.00549, θ w = 0.01406) and low average linkage disequilibrium (r (2) = 0.061). Association studies in 528 individuals of an association population showed that nine SNPs (false discovery rate Q < 0.10) and one haplotype (Q < 0.10) were significantly associated with differences in four physiological and biochemical traits (P < 0.005), with each marker explaining 1.31-5.87 % of the total variance in the corresponding trait. PsCBF2 transcript levels differed significantly in abundance among genotypic classes for most of the significant SNPs. Identification of these significant associations will help reveal the molecular basis of physiological differences and provide a starting point for marker-assisted selection for traits involved in stress tolerance in P. simonii.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China, liying105527@126.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Baohua</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Qingzhang</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>KM657435</AccessionNumber>
<AccessionNumber>KM657436</AccessionNumber>
<AccessionNumber>KM657437</AccessionNumber>
<AccessionNumber>KM657438</AccessionNumber>
<AccessionNumber>KM657439</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>04</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056726" MajorTopicYN="Y">Genetic Association Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019655" MajorTopicYN="N">Quantitative Trait, Heritable</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25916311</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-015-2307-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2002 Oct;32(1):13-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12366797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2005 Dec 15;444(2):139-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16309626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Sep;183(1):289-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19596906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Nov;16(4):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 1995;87(1):105-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15091613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Aug;129(4):1781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2002 Dec;45(6):1083-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jan;175(1):399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2000 Aug 8;157(1):113-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Aug;284(2):105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20577761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jul;9(7):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Apr 28;14:111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24774695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Jan 25;290(3):998-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11798174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):3155-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Nov;111(7):1440-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Apr;16(2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Oct;115(2):327-334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Feb;119(2):463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9952441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 Mar;52:119-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22305075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Jun 29;13:286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22747754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Feb;104(2-3):214-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Jun;3(3):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2014 Jul 23;62(29):7057-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24984087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Sep 15;166(14):1544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19464753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9023378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2169-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21719693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Aug;45(8):1042-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Aug;162(8):929-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16146319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Dec 12;19(18):2496-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Oct;4(5):401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Dec;90(6):681-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12451023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Hered. 2002;53(2):79-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12037407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jan;31(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Nov;118(3):1067-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9808752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Assoc Physicians India. 1994 Oct;42(10):769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7876043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Mar;54(5):767-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2001 May;160(6):1085-1093</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Apr 3;280(5360):104-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Feb;38(2):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Jul;49(5):459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12090622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):910-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Oct 26;276(43):39586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11517217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Rep. 2014 Jun 25;34(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24865400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):410-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Aug;10(8):1391-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2000 Jul;48(7):2726-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10898613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Aug;164(4):1537-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):411-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Aug;152(4):1711-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Mar;172(3):1915-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7076-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9192694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jul;58(4):543-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16021338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Aug;67(6):589-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18470484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 2001 Nov;60(3):227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11855957</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Oman</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
<name sortKey="Xu, Baohua" sort="Xu, Baohua" uniqKey="Xu B" first="Baohua" last="Xu">Baohua Xu</name>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</noCountry>
<country name="Oman">
<noRegion>
<name sortKey="Li, Ying" sort="Li, Ying" uniqKey="Li Y" first="Ying" last="Li">Ying Li</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25916311
   |texte=   Transcript abundance patterns of Populus C-repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25916311" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020